

Fallbeispiele mit klinischem Bezug zum "Membranseminar 1": Allgemeine Zellphysiologie, Diffusion, Ruhemembran- & Aktionspotential

Schmidt, Lang, Heckmann (31. Aufl.): Kapitel 4

Speckmann, Hescheler, Köhling (5. Aufl.): Kapitel 2.1, 2.2

Klinke, Pape, Kurtz, Silbernagel (6. Aufl.): Kapitel 3

Biochemie: Glukose-6P

1. Wir betrachten einen Zellverband, der 100 µm entfernt von "seiner" Kapillare liegt. Nehmen wir an, es dauert im Mittel 1 s bis Sauerstoff aus der Kapillare den Zellverband erreicht. Nun versiegt der Blutfluss aller Kapillaren im Umkreis von 1 cm durch einen Thrombus in der zuführenden Arteriole. Die nächstgelegene Kapillare mit intaktem Blutfluss ist 1 cm entfernt. Wie lange dauert es im Mittel, bis Sauerstoff aus dieser Kapillare den Zellverband erreicht?

Beachte: es gilt $\langle r^2 \rangle = 6$ D t, mit der mittleren quadrierten zurückgelegten Wegstrecke $\langle r^2 \rangle$, dem Diffusionskoeffizienten D und der Zeit t.

2. Ein Patient hat versehentlich eine stark K⁺-haltige Lösung infundiert bekommen. Nehmen wir an, seine K⁺-Konzentration im Gewebe ([K⁺]_a) wäre nun 30 mM ([K⁺]_i = 140 mM).

Wie hoch ist unter diesen Bedingungen das K⁺-Gleichgewichtspotential? Welche Probleme würden Sie erwarten?

- 3. Nehmen wir an, für Glukose bestünde ein Konzentrationsgradient zwischen Zellinnerem und –äußerem von 2 mmol/ L ([Glukose]_i = 2 mmol/ L; [Glukose]_a = 4 mmol/ L). Die Glukose-Permeabilität der (reinen) Zellmembran sei 10⁻⁸ cm/s. Die Zelle hat eine Oberfläche von 300 μm² und ein Volumen von 500 μm³.
 - a) Wie viele Glukose-Moleküle bewegen sich (netto) pro s über die Membran?
 - b) Ist das viel?
 - c) Welchem Konzentrationsanstieg entspräche dieser Wert?
 - d) Was kann die Zelle tun, um die Glukoseaufnahme zu optimieren?